PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19068 | Accepted: 8697 |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
Source
题意:
有M个猪圈,每个猪圈里有若干头猪,起初所有猪圈都是关闭的。有N个顾客依次来买猪,每个顾客有一个需求量,并且会打开指定的几个猪圈从其中买猪。每个顾客走后,他打开的猪圈中的猪可以被任意地调换到其它开着的猪圈里,然后所有猪圈重新关上。我们可以选择卖给每个顾客的猪的数量,问能卖出的猪的总数的最大值。
解法:
我最初的想法是将顾客作为左部点,猪圈作为右部点,这样可以通过样例但是错误的建图方法。忽略了“每个顾客走后,他打开的猪圈中的猪可以被任意地调换到其它开着的猪圈里”这句关键的话。
把顾客作为点。建立源点和汇点。
从源点出发向第一个能打开猪圈i的顾客连一条边,容量为猪圈i里猪的数量。
从每个顾客出发向汇点连一条边,容量为该顾客的需求量。
如果顾客i在顾客j之前来买猪,并且顾客i和j都能打开某一个猪圈,那么从i到j连容量为正无穷的边。
注意:add(u,v,w1)+add(u,v,w2)<=>add(u,v,w1+w2),但后者可降低时间复杂度,前者会T
我T掉的代码:
#include<cstdio> #include<iostream> #include<cstring> #include<queue> #define inf 1000000000 #define for2(i,s,t) for(int i=(s);i<=(t);i++) using namespace std; const int M=1500,N=150; int m,n,s,t,pig[M],door,want,last[M]; int head[N],tot=1,maxflow,dis[N],cur[N],h[N]; bool vis[M]; struct edge{ int go,next,v; }e[M*N]; inline void addedge(int x,int y,int v) { e[++tot]=(edge){y,head[x],v};head[x]=tot; e[++tot]=(edge){x,head[y],0};head[y]=tot; } bool bfs()//构造分层图 { queue<int> q; for2(i,s,t) dis[i]=-1; q.push(s);dis[s]=0; while(!q.empty()){ int x=q.front();q.pop(); for(int i=head[x];i;i=e[i].next){ int y=e[i].go; if(e[i].v&&dis[y]==-1){//dis兼有判断和记录的作用 dis[y]=dis[x]+1; q.push(y); } } } return dis[t]!=-1; } int dfs(int x,int f) { if(x==t) return f; int tmp,used=0; for(int i=cur[x];i;i=e[i].next){//当前弧优化—从当前弧开始 int y=e[i].go; if(e[i].v&&dis[y]==dis[x]+1){ tmp=dfs(e[i].go,min(e[i].v,f-used)); e[i].v-=tmp; e[i^1].v+=tmp; if(e[i].v) cur[x]=i; used+=tmp; if(used==f) return f; } } if(!used) dis[x]=-1; return used; } void dinic() { maxflow=0; while(bfs()){ for(int i=s;i<=t;i++) cur[i]=head[i];//当前弧优化—更新当前弧 maxflow+=dfs(s,inf); } } int main() { memset(last,0,sizeof(last)); memset(vis,false,sizeof(vis));//还没有人打开任何猪圈 scanf("%d%d",&m,&n); s=0;t=m+n+1; for2(i,1,m) scanf("%d",&pig[i]); for2(i,1,n){ int tt; scanf("%d",&tt); while(tt--){ scanf("%d",&door); if(!last[door]) addedge(s,i,pig[door]),last[door]=i;//last应为first else addedge(last[door],i,inf); } scanf("%d",&want); addedge(i,t,want); } dinic(); printf("%d\n",maxflow); return 0; }
阿当AC的代码:
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #include<cstdlib> #include<queue> #define F(i,j,n) for(int i=j;i<=n;i++) #define D(i,j,n) for(int i=j;i>=n;i--) #define LL long long #define pa pair<int,int> #define MAXN 105 #define MAXM 1005 #define INF 1000000000 using namespace std; int n,m,k,x,s,t,cnt=1,ans=0; int pre[MAXM],head[MAXN],cur[MAXN],dis[MAXN],c[MAXN],a[MAXM]; bool vst[MAXM],f[MAXN]; struct edge_type { int next,to,v; }e[10005]; inline int read() { int x=0,f=1;char ch=getchar(); while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();} while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } inline void add_edge(int x,int y,int v) { e[++cnt]=(edge_type){head[x],y,v};head[x]=cnt; e[++cnt]=(edge_type){head[y],x,0};head[y]=cnt; } inline bool bfs() { queue<int>q; memset(dis,-1,sizeof(dis)); dis[s]=0;q.push(s); while (!q.empty()) { int tmp=q.front();q.pop(); if (tmp==t) return true; for(int i=head[tmp];i;i=e[i].next) if (e[i].v&&dis[e[i].to]==-1) { dis[e[i].to]=dis[tmp]+1; q.push(e[i].to); } } return false; } inline int dfs(int x,int f) { int tmp,sum=0; if (x==t) return f; for(int &i=cur[x];i;i=e[i].next) { int y=e[i].to; if (e[i].v&&dis[y]==dis[x]+1) { tmp=dfs(y,min(f-sum,e[i].v)); e[i].v-=tmp;e[i^1].v+=tmp;sum+=tmp; if (sum==f) return sum; } } if (!sum) dis[x]=-1; return sum; } inline void dinic() { while (bfs()) { F(i,1,n+2) cur[i]=head[i]; ans+=dfs(s,INF); } } int main() { memset(head,0,sizeof(head)); memset(c,0,sizeof(c)); memset(vst,false,sizeof(vst)); m=read();n=read();s=n+1;t=n+2; F(i,1,m) a[i]=read(); F(i,1,n) { memset(f,false,sizeof(f)); k=read(); while (k--) { x=read(); if (!vst[x]) {vst[x]=true;c[i]+=a[x];} if (pre[x]&&!f[pre[x]]) add_edge(pre[x],i,INF),f[pre[x]]=true; pre[x]=i; } x=read();if (x) add_edge(i,t,x); } F(i,1,n) if (c[i]) add_edge(s,i,c[i]); dinic(); printf("%d\n",ans); }